Phoenix, AZ, May 17 – 22, 2010

# Methodology to Assess Potential Glint and Glare Hazards from Concentrating Solar Power Plants: Analytical Models and Experimental Validation

Clifford K. Ho, Cheryl M. Ghanbari, and Richard B. Diver

Concentrating Solar Technologies Department
Sandia National Laboratories
Albuquerque, NM 87185
<a href="mailto:ckho@sandia.gov">ckho@sandia.gov</a>





- Introduction
- Safety Metrics
- Glint and Glare Analysis
- Model Validation
- Summary



#### Introduction

- Glint and glare may cause unwanted visual impacts
  - Glint is momentary flash of light; glare is more continuous source of excessive brightness
  - Visual impacts range from flash blindness to retinal burn
- Need quantified analysis of glint/glare to reduce uncertainties associated with visual impacts of CSP installations
  - Industry, military, government agencies (e.g., California Energy Commission, Transportation Research Board)



# **Examples of Glint/Glare**



Solar One (10 MW<sub>e</sub> power tower, Daggett, CA)



Central Receiver Test Facility (SNL, NM)



National Solar Thermal Test Facility (SNL, NM)



Kramer Junction (150 MW<sub>e</sub> parabolic trough, Mojave Desert, CA)

Introduction

- Safety Metrics
- Glint and Glare Analysis
- Model Validation
- Summary



## **Potential Impacts**



#### **Retinal Irradiance**



#### Need to calculate

- Retinal irradiance
  - Function of irradiance at the cornea
- Subtended angle of glint/glare source



- Introduction
- Safety Metrics
- Glint and Glare Analysis
- Model Validation
- Summary



## **Modeling Approach**

Analyze two different types of reflection



Specular Reflection

(polished surfaces; e.g., mirrors)



Diffuse Reflection

(rough surfaces; e.g., receivers)



# **Specular Reflections**

#### Point Focus and Line Focus Collectors



Dish

Heliostat

Parabolic Trough



# **Specular Reflections**

#### Potential for glint and glare from collectors

- Off-axis; misalignment; moving to or from stow
- End-loss and spillage for troughs



Off-axis Dish

Off-axis Trough

**End-Loss from Trough** 



#### **Analysis Steps**

- Calculate retinal irradiance using equations in paper for specular or diffuse reflections
  - Collector optical properties, DNI, pupil diameter
- Calculate subtended angle using equations in paper
  - For diffuse reflections, source is given by size of receiver or reflecting source
  - For specular reflections, use equations
- Identify potential impact using plot of retinal irradiance vs. subtended source angle



## Specular Irradiance





## Subtended Source Angle





# **Comparison to Safety Metrics**



 $\rho = 0.92$ 

 $\beta$  = 9.4 mrad

 $D_{h} = 6.86 \text{ m}$ 

focal length = 10 m

50 m viewing distance

⇒ Retinal irradiance= 7 W/cm²

⇒ Subtended source angle ~ 2 mrad



- Introduction
- Safety Metrics
- Glint and Glare Analysis
- Model Validation
- Summary



# **Specular Reflection Testing**





## Specular Reflection Validation





# **Diffuse Reflection Testing**





#### **Diffuse Reflection Validation**





- Introduction
- Safety Metrics
- Glint and Glare Analysis
- Model Validation
- Summary



### Summary

- Glint and Glare can cause unwanted visual impacts
- Analytical models have been developed to quantify glint and glare
  - Specular reflections
    - Point-focus and line-focus
  - Diffuse reflections
- Safety metrics have been compiled
  - Plot of retinal irradiance vs. subtended source angle can be used to assess potential impact of quantified glint/glare
- Models have been validated with test data



## **Ongoing Work**

- Reduce uncertainties associated with glint/glare for permitting and certification of solar power systems
  - Transportation Research Board
    - Synthesis Report on "Investigating Safety Impacts of Energy Technologies on Airports and Aviation"
  - California Energy Commission
  - Military
  - Industry
- Develop web-based tool for glint/glare analysis

